Low Power AM Radio

An Affordable and Automated Broadcast Tool

Bruce DeYoung
Oregon Extension Sea Grant Program
OREGON STATE UNIVERSITY
Contents

What Is Low Power Radio? ... 2
The Nuts and Bolts of LPR ... 3
LPR Uses and Users .. 4
Interested in More LPR Information? 6
Message Writing Pointers (Appendix A) 7
LPR Equipment Sources (Appendix B) 8

See also the companion educational videotape by Oregon Sea Grant,
Making Waves with Low Power AM Radio.

This booklet was funded by the NOAA Office of Sea Grant and Extramural Programs, U.S. Department of Commerce, under grant number NA76RG0476, project number A/EC-4-NSI, and by appropriations made by the Oregon State legislature. The U.S. government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon.

Sea Grant is a unique partnership with public and private sectors, combining research, education, and technology transfer for public service. This national network of universities meets the changing environmental and economic needs of people in our coastal, ocean, and Great Lakes regions.

© 2001 by Oregon State University. All rights reserved.
Oregon Sea Grant, Oregon State University,
322 Kerr Administration Bldg., Corvallis, OR 97331-2131
ORESU-F-01-001
Rapid progress in communication technology is enabling us to deliver customized information to diverse audiences at their convenience. One tool growing in both popularity and use is low power radio.

Low power radio (LPR) is a specialized form of AM radio broadcasting. This technology made its debut in the 1970s to provide reports about traffic and weather conditions to automobile travelers. Since then, hundreds of LPR stations have been successfully dispensing information across the nation. Operators of LPR stations include communities, airports, chambers of commerce, governmental agencies, ports, outdoor recreation areas—even Disney World!

This report describes LPR technology and suggests ways for Extension educators and cities, parks, businesses, and other governmental units to provide information and education to audiences they wish to reach. A representative listing of LPR equipment vendors appears in Appendix B.
What Is Low Power Radio?

Low power radio is a low-wattage radio station which broadcasts on AM frequencies. It is relatively simple to use and inexpensive to operate. LPR typically covers a broadcast area of one to fifteen square miles, depending on signal strength and local terrain.

It has four basic components: an audio recorder to capture and repeatedly play back voice messages; an antenna; an AM radio transmitter; and roadway signs alerting potential listeners to the radio broadcast. (See diagram on page 1.)

LPR transmitters fall into two categories: systems operating with 0.1 watts output or less and systems operating between 0.1 watts and 10 watts of power. While both can deliver targeted information to listeners, each has different capabilities and legal requirements.

0.1 Watt Station

The least powerful LPR station broadcasts with 0.1 watts of power, covering a radius of up to 0.5 mile from the transmitter. This station's limited broadcast range is offset by increased flexibility in use. Licensing is not required for this station under U.S. Federal Communications Commission (FCC) rules.

The broadcast for a 0.1-watt station may be chosen from among the unused AM channels in the local area. No public notification is needed and almost any message contents may be broadcast, including business commercials. This LPR format can also include music and other sound effects to enhance the message.

An example of the message flexibility inherent in using this LPR format is found in Bend, Oregon. There, a real estate firm uses 0.1-watt LPR transmitters at homes it is seeking to sell. As they drive by a home, prospective buyers can tune in their car radios and hear about the house’s amenities. This imaginative use of information technology potentially saves time for sellers and buyers.

10-Watt Station

The more powerful LPR station broadcasts with 10 watts of power, covering a minimum radius of about 2.5 miles from the transmitter. This LPR station must be sponsored by a governmental entity and licensed by the FCC. This LPR broadcast format can not include commercial promotions, music, or other sound effects (see Appendix A).

“It’s just a neat new tool to give people a message.”

Tracey Crago, Woods Hole Oceanographic Institution

The primary purpose of this higher-wattage station is to provide traveler information. Messages on a 10-watt station typically address weather conditions, local points of interest and activities, road conditions, travel directions, availability of lodging, and traffic hazards or advisories.

All 10-watt LPR AM stations are assigned broadcast frequencies by the FCC as part of its licensing process.

The FCC license application process for a 10-watt LPR station generally takes about three months after submission of the paperwork. Manufacturers of LPR equipment will often provide assistance in completing and filing the appropriate forms.

Key information requested on the license application includes the precise unit of local government that is seeking the LPR authorization and the station’s proximity to airports, bridges, tunnels, historical sites, interstate highways, and public parks or lands.

A map of the proposed LPR transmitter site must accompany the license application.
Topographical maps can be used for this purpose, with the exact location of the transmitter site indicated. In metropolitan areas, a location map showing nearby streets and buildings is often acceptable for this purpose.

The Nuts and Bolts of LPR

LPR functions with four components: an audio recorder to capture and repeatedly play voice messages, an antenna, an AM transmitter, and roadway signs alerting potential listeners to the broadcast.

During the early days of LPR, messages were recorded and stored on a cassette tape using analog technology. Tape wear was an inherent problem that required the periodic replacement of the tape cassette. In addition, operators of LPR stations frequently had to travel to the broadcast site to record new messages or rearrange existing ones.

The dependability and convenience of LPR has increased with the advent of digital technology. This technology eliminates the problem of tape wear and enables LPR station operators to record and alter messages from remote locations, such as the office or home base, by telephone. Digital technology also allows the storage and variable sequencing of multiple messages.

A number of LPR manufacturers exist in the United States (see Appendix B). Technicians for these companies can assist you in selecting appropriate antenna and transmitter equipment for your situation. Regardless of the equipment selected, you should also consider electrical surge protection and lightning arresters for the LPR system.

Planning for LPR

In planning for an LPR station, find out if electrical power is available at the prospective site. If remote message control is desired, telephone access to the site is also needed. If these resources are lacking, messages can be directly recorded on-site and alternate power sources such as batteries or solar energy can be employed.

Most LPR stations operate with a vertical antenna. The FCC requires that such antennas not exceed 49.2 feet above the ground. If you intend to use LPR in a metropolitan area, additional planning is necessary for the antenna. One possibility is to mount the antenna on the roof of a building. There is no rooftop height limitation for the 0.5-mile LPR station. But for the 2.5-mile station operating at 530 kHz, the building may not exceed two stories (three stories for other 2.5-mile LPR station frequencies).

Proper grounding is vital to the effectiveness of an LPR system. An appropriately installed ground system improves antenna efficiency and reduces lightning surge impacts. Space constraints and soil conductivity often determine which ground system is appropriate for the given situation. Again, LPR company personnel can help you select appropriate hardware.

"Printed information is all dated information; it can change tomorrow. With this [LPR] system here, we can change the information hourly if we want to."

Robert Sperling, Big Sable Point Lighthouse

Signs alerting potential listeners to the LPR broadcast are essential. If they are to be placed along public highway right-of-ways, permits are typically needed. Application forms are available through your state transportation department, along with requirements for sign design and construction. Many state transportation departments will design, construct, and install such signs for a fee.

Since local environmental conditions must be accommodated and LPR enterprises have varying equipment options, the cost for each site
must be determined with assistance from the manufacturer. Without installation, a 0.1-watt LPR system typically costs $2,500–$4,000 while 10-watt systems range from $9,000 to $12,000.

One way to hold costs down is to compare prices among various LPR companies. Also, you might consider purchasing previously used components which have warranties in effect.

LPR Messages

The effectiveness of LPR is directly tied to the quality of the broadcast message. If the script is poorly written, listeners will tune out rather than be tortured by audio babble. Likewise, a powerful script which lacks appropriate delivery risks losing the listener.

From the standpoint of quality control, it is often helpful to have others provide feedback on the clarity of LPR messages before unleashing them on the public. A typical error in message construction is to create a single, long communication. Since most digital playback units can broadcast multiple messages, several shorter messages are better than a rambling dialogue. Also, don’t overlook the opportunity to broadcast current information alongside prerecorded messages. This can be accomplished by cycling NOAA weather radio broadcasts into the LPR message stream at predetermined intervals.

Some helpful script writing pointers appear in Appendix A. A quality LPR message doesn’t require professional narration, but operators sometimes feel this need. A variety of local options exist for acquiring professional narration, including local performing artists or radio station announcers.

Evaluating your LPR message performance requires a strategy for interacting with listeners. The starting point is to clarify the purpose for employing an LPR system. Then, one way to gain feedback is to encourage listeners to request information from a chamber of commerce or other local agency. In the process of fulfilling these requests, listeners can be asked to respond to predetermined questions related to the LPR messages.

If your LPR message seeks to change behavior, its effectiveness can be judged through observations of target audience activity before and after the broadcast. A great way to accomplish this task is to involve students in the process. Often area colleges and universities are looking for real world educational opportunities for students who are studying business management or marketing.

LPR Uses and Users

Successful LPR applications, digitized equipment, and modest start-up costs are stimulating wider use of this communication technology. Hence, a variety of organizations are employing this tool.

Newport, a community located on the scenic Oregon coast, recently established an LPR station. More than 1 million visitors travel through Newport each year. Community leaders are challenged with making visitors aware of recreational opportunities without causing traffic bottlenecks. To address the problem, the Newport Chamber of Commerce, OSU Extension Sea Grant, and other groups teamed up to initiate a LPR station. The station broadcasts information on things to see and do in the local area. Special emphasis is placed on encouraging nonconsumptive recreational activities. Other messages have a stronger educational component by focusing on coastal resources such as seasonal migrations of gray whales. Information about marine resource interpretive workshops being conducted by Oregon State University and by a new public aquarium are also broadcast over this LPR.

While the effectiveness of the Newport project is now being evaluated, other Extension educators are already planning to use LPR technology. Some examples of creative LPR applications being planned by Extension staff in the Pacific Northwest include

- Agricultural agents communicating pest management and other information real time to producers in two counties
- Extension foresters informing motorists in mountain passes of environmental stewardship practices and travel tips
• Extension Sea Grant staff collaborating with two states to improve recreational boating safety in a dangerous estuary
• 4-H Youth Extension staff updating daily activity schedules for summer campers in scattered cabin locations
• Extension Home Economics staff broadcasting customized food and nutrition education to specific radio listeners
• Community development agents collaborating with small riverfront communities to encourage more visitation by recreational boaters

Coastal Applications
The use of this technology for natural resource interpretation is an emerging opportunity. Recently, the Oregon Department of Fish and Wildlife began testing LPR as a tool for resource interpretation at wildlife viewing areas. In New York State, Sea Grant collaborated with a park commission to test LPR in a variety of coastal settings. An LPR broadcast at a coastal campground informed listeners of marine safety, and LPR at a barrier beach aided tens of thousands of beachgoers seeking vehicle parking in a multitude of paved lots.

Examples of LPR operators (chart adapted from Digital Recorders, Inc.)

Weather updates	X	X	X	X	X	X
Safety tips	X	X	X	X	X	X
Road conditions	X	X	X	X	X	X
Traffic advisories	X	X	X	X	X	X
Operating schedules	X	X	X	X	X	X
Activity listings	X	X	X	X	X	X
Lodging availability	X	X	X			
Rules and regulations	X	X	X	X	X	X
Historic or cultural attractions	X	X	X	X		
Ticket or fee requirements	X	X	X	X	X	X
Parking advisories	X	X	X	X	X	X
Public park resources	X	X	X	X	X	

We can prepare scripts by which we can talk to [all visitors] in the same manner. We can verify the information we provide... . . .

Frank Weed, U.S. National Park Service

The future of LPR as a distance learning tool in ecotourism is promising. For instance, coastal resorts and parks can use LPR to broadcast interpretative information to visitors at nearby tidepools. With inexpensive AM headphones, the visitors would receive a narrated field trip. These guided tours can also teach and encourage the use of appropriate stewardship practices to maintain the ecosystems being observed.

During peak tourist seasons, many coastal highways are clogged with sightseer vehicles. Too often interpretive signs placed in small turnout areas cause tourism-related traffic...
congestion or accidents. Research suggests that radio is a more appropriate informal learning medium than is a road sign for information targeted at travelers using vehicles.

The use of LPR can revolutionize interpretation in waterfront communities. In these instances, interpretation of natural or cultural resources can take the form of a guided car tour. Waterfront topics addressed by LPR could range from the types of vessels at port docks to whale-watching techniques. Here again, general travel information provided by low power radio can be augmented with educational messages encouraging appropriate care and use of coastal resources.

Interested in More LPR Information?

LPR communication technology holds considerable promise for a variety of community and educational organizations. Technical information and cost data on low power radio equipment can be obtained from LPR enterprises listed in Appendix B.

More information about LPR and distance learning can be found in the following

Journal Articles

Beaudoin, M. 1990. "The Instructor's Changing Role in Distance Education," The American Journal of Distance Education. Vol. 4, No. 2.

Books

Reports

Papers in Proceedings

Appendix A

Message Writing Pointers
Courtesy of Information Station Specialists, Zeeland, Michigan

Writing broadcast messages for a traveler's information radio station may be a new experience for you. The following are points to keep in mind as you plan your new radio broadcast.

1) By law, your station must broadcast its call sign. It should be mentioned every 30 minutes.

2) Always identify the organization or agency that is responsible for producing the broadcast.

3) Do not mention names of businesses in 2.5 mile AM broadcasts. The only exception is airline names, which may be mentioned in arrival/departure messages by airports.

4) Broadcast voice information only. Music is disallowed. Sound effects are acceptable.

5) When giving driving instructions such as "turn right" or "turn left," consider the direction(s) in which people are approaching as they listen to the broadcast. Different instructions may be required for different traffic directions. Give directions slowly and repeat them if possible. Motorists usually cannot make notes and must commit your instructions to memory. Include street names and compass directions when you can to make your instructions redundant.

6) Use visual cues which motorists can watch for. Talk about features of your area which may be of interest to them, especially those which they can view as they hear the broadcast. This increases interest in the broadcast and a greater likelihood that it will be listened to and acted upon.

7) Interest may also be maintained by using more than one voice to read short sections of the broadcast alternately. This "two-voice" approach works especially well with male and female voices.

8) Radio listeners are accustomed to information being repeated. Do not hesitate to repeat short pieces of very important information periodically during the broadcast.

9) If your broadcast comprises a general message that seldom changes and an alternating updated message which contains current information, remember to promote the updated message within the general message one or more times. The following is an example of a general message:

 Welcome to the Airport. Rental car return is located on your right as you enter. Stay tuned for an update on current parking lot status in 30 seconds. On your left is the Terminal A long term parking ramp . . .

 In this way, you can maintain the interest of listeners through the general message who may have heard the message before.

10) Remember that listeners will tune in and out of your broadcast at random places and may perceive no beginning or end to the programming because of its circular nature. Arrange broadcasts so that they make sense no matter where the listener begins listening. If one piece of information is critical to understanding the whole broadcast, repeat that information often.

11) Time the length of the broadcast cycle so that listeners are likely to hear it in its entirety before they have to make a decision.

Example:
The highway department placed a radio antenna along the interstate. The department placed its signs 3 miles north of the radio antenna, announcing the signal and frequency to southbound traffic. Southbound drivers must make a decision on whether to exit 4 miles after they pass the signs (a mile south of the antenna). Subtracting 30 seconds for the time it takes to tune in the station, drivers have about 3.5 minutes to listen to the broadcast before they reach the critical exit if they are traveling about 60 miles per hour. The length of the broadcast cycle should be 3.5 minutes or less. To allow listeners to hear the broadcast twice, a 1.75 minute cycle should be used.
Appendix B

Low Power Radio Equipment Sources in the U.S.A.

No endorsement of the enterprises or products mentioned below is intended or implied by Oregon Sea Grant, the National Sea Grant College Program, or Oregon State University. This is a sampling of known firms:

Highway Information Systems, Inc.
Contact person: Andrew Turner
4021 Stirrup Creek Drive
Suite 100
Durham, NC 27713
1-800-849-4447
http://www.highwayinfo.com/

Information Station Specialists
Contact person: Bill Baker
3368 88th Avenue
Zeeland, Michigan 49464
616-772-2300
http://www.theradiosource.com

Realty Electronics
195 N. Main St.
Fond du Lac, WI 54935
1-800-444-8255
http://www.talkinghouse.com

Transportation Intelligence, Inc.
Contact person: Jo Ann Alpiser
P.O. Box 13004
Raleigh, N.C. 27605
1-800-948-8916
See also the companion educational videotape by Oregon Sea Grant, *Making Waves with Low Power AM Radio.*